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Abstract
Deep reinforcement learning has been extensively
studied, resulting in several extensions to DQN
that improve its performance, such as replay
buffer sampling strategies, distributional value
representations, and double/dueling networks.
Previous works have examined these extensions
in the context of either discrete action spaces or in
conjunction with actor-critic learning algorithms,
but there has been no investigation of combin-
ing them for deep value-based continuous control.
We adapted the methods discussed in Rainbow
DQN to RBF-DQN, a deep value-based method
for continuous control, showing improvements
when evaluated over a set of 7 OpenAI Gym con-
tinuous control tasks in baseline performance and
sample efficiency. Rainbow RBF-DQN outper-
forms both vanilla RBF-DQN and state-of-the-art
actor-critic methods on the most challenging tasks
such as Half-Cheetah and Humanoid.

1. Introduction
Deep Reinforcement Learning (DRL) algorithms have
sucessfully learned to solve complex decision-making prob-
lems, in part due to algorithmic extensions to the core Q-
learning framework. For example, Mnih et al. (2013) demon-
strated that by using a target network in conjunction with a
replay buffer to save previous transitions, a Convolutional
Neural Network (CNN) could be trained using Q-Learning
(i.e: DQN) to effectively play Atari games from raw pixels.
Other important algorithmic extensions are replay buffer
sampling techniques (Schaul et al., 2015), double networks
(van Hasselt et al., 2015), and distributional representations
for value functions (Badia et al., 2020). Rainbow DQN
(Hessel et al., 2018) selected six popular DQN techniques—
Double Q-Learning, Prioritized Replay (Schaul et al., 2015),
Dueling Networks (Wang et al., 2015), Multi-Step Learn-
ing (Asis et al., 2018), Distributional Reinforcement Learn-
ing (Bellemare et al., 2017), and Noisy Nets (Fortunato
et al., 2018)—and demonstrated that these techniques can
be merged effectively into a single integrated agent that
achieves high performance across 57 Atari games.

The introduction of RBF-DQN (Asadi et al., 2020) was a

Figure 1: Rainbow RBF-DQN and SAC performance rela-
tive to vanilla RBF-DQN across the 7 MuJoCo control tasks
presented.

key neural network architectural breakthrough that made
deep value based RL perform competitively on continuous
action domains. In this paper we select four of the im-
provements to DQN—Distributional Representations, Duel-
ing Networks, Double Networks, and Priority Experience
Replay—and modify them to work in the continuous action
space with RBF-DQN. The resulting agent, termed Rain-
bow RBF-DQN, overall demonstrates more stable learning
and lower sample complexity on 7 OpenAI/Mujoco contin-
uous control tasks: Humanoid, Ant, Half-Cheetah, Hopper,
Bipedal Walker, Lunar Lander, and Pendulum.

2. Background and Related Work
2.1. Markov Decision Processes and Q-Learning

Sequential decision making problems are often modeled
as Markov Decision Processes (MDPs)—represented as
a tuple of (S,A, T,R, γ), where S represents the set of
possible states in the environment an agent could access,
A represents the set of possible actions the agent can
take, T : S × A × S → [0, 1] captures a stochastic no-
tion of transition dynamics for an agent acting in a state,
R : S ×A× S → R represents the scalar reward received
from the environment due to a transition, and γ ∈ [0, 1]
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represents the discounting of future reward. In reinforce-
ment learning, the objective of an agent is to find a pol-
icy which maximizes its expected sum of discounted re-
wards, known as expected return. The state-value function
V π(s) = E[

∑∞
k=0 γ

krt+k+1|s = st] represents the agent’s
expected return when starting in state s ∈ S and acting
forever under policy π. The state-action-value function
Qπ(s, a) = E[

∑∞
k=0 γ

krt+k+1|s = st, a = at] represents
the agent’s expected return when taking action a ∈ A from
state s, and then forever acting under policy π. An optimal
policy π∗ is the policy for which V π∗

(s) ≥ V π(s) for all
s ∈ S. Value-based approaches find optimal policies by
solving the Bellman equation for either the optimal V (s)
or optimal Q(s, a). Q-Learning (Watkins & Dayan, 2004)
solves Q∗(s, a) = R(s, a) + γ ·

∑
s′∈S maxa′ Q∗(s′, a′).

For discrete action spaces, the max operation is tractable
by iterating through finite |A| actions. In continuous ac-
tion spaces however, function approximations must be em-
ployed.

Deep value-based methods use deep learning to learn a
set of parameters θ to approximate the state-action value
function Qθ(s, a). The vanilla Q-Learning objective is
to minimize the TD-Error (also known as the Bellman er-
ror), which is defined for a single transition (s, a, r, s′) as
r+γmaxa′ Qθ(s

′, a′)−Qθ(s, a). Q-Learning is off-policy
and therefore allows the agent to use a behavioral policy
(such as epsilon greedy) to approximate a target policy (the
optimal policy). Mnih et al. (2013) introduced DQN, allow-
ing deep neural networks to play Atari using the TD-Error
objective, a replay buffer to store previously experienced
transitions, and a target network for stabilizing the TD tar-
get between learning updates. Note that in Q-Learning, the
update rule relies on finding maxa′∈A Q̂(s′, a′; θ). This is
prohibitively expensive in continuous action spaces, due to
an infinite search space, and approximations like discretiz-
ing the action space may produce sub-optimal solutions.

RBF-DQN (Asadi et al., 2020) is a value-based deep re-
inforcement learning approach that uses radial-basis func-
tions to approximate the Q function for continuous action
space tasks. RBF-DQN learns both the radial-basis cen-
troids (which represent sampled actions) and their values,
and uses a kernel to efficiently compute the action that max-
imizes the Q-value with a bounded error that depends on
the temperature parameter β. Specifically, RBF-DQN ap-
proximates Q∗(s, a) by learning centroid locations ai(s; θ)
and centroid values vi(s; θ) as functions of state s and pa-
rameters θ and β according to:

Q̂β(s, a; θ) :=

∑N
i=1 e

−β∥a−ai(s;θ)∥vi(s; θ)∑N
i=1 e

−β∥a−ai(s;θ)∥
. (1)

The centroid locations ai(s; θ) and state-dependent centroid
values vi(s; θ) are used to form the Q function output (Asadi

et al., 2020), and are learned end-to-end during training by
optimizing the Bellman error similar to the DQN loss (Mnih
et al., 2013). The action maximization property of RBF-
DQN (Asadi et al., 2020) guarantees all critical points of Q̂β

can be well-approximated by a centroid location ai. This
makes action-maximization as simple as searching over all
N centroids maxi∈[1,N ] Q̂β(s, ai; θ) where ai represents a
centroid location. In multi-dimensional action spaces, the
temperature parameter β can be tuned to ensure an upper
bound on error for the optimal action (Asadi et al., 2020):

max
a∈A

Q̂β(s, a; θ)− max
i∈[1,N ]

Q̂β(s, a; θ) ≤ O(e−β). (2)

The action-maximization property of Deep RBFs, paired
with its universal function approximating properties, make
RBF-DQN well-suited to continuous control tasks.

2.2. Deep Reinforcement Learning Improvements

Many of the recent successes in deep reinforcement learning
have come from improvements to the vanilla Q-Learning
approach. In this work, we specifically investigate a set
of popular extensions to DQN that are included in Rain-
bow DQN (Hessel et al., 2018), which combines double
Q-Learning (van Hasselt et al., 2015), prioritized experi-
ence replay (Schaul et al., 2015), dueling networks (Wang
et al., 2015), and distributional RL (Bellemare et al., 2017).
We now describe each of these Rainbow extensions before
describing how we augment them to be effective for working
with RBF-DQN.

Double Q-Learning: Under certain stochastic environ-
ments, Q-Learning can perform very poorly due to the
overestimation of action values. Double Q-Learning net-
works use two estimators to address the overestimation bias.
Double-DQN (van Hasselt, 2010) uses an online network,
parameterized by θ, to pick the action that is evaluated by
the target network, parameterized by θ−. This leads to an
adapted DQN loss:

(rt+1 + γQθ−(st+1, argmax
a

Qθ(st+1, a))−Qθ(st, at))
2.

(3)
Related work has shown that the double Q-Learning algo-
rithm can be generalized to work with function approxima-
tors (van Hasselt et al., 2015).

Dueling Networks Dueling Networks (Wang et al., 2015)
separate out the process of learning state-action pairs Q(s, a)
into learning state value V (s) and action advantage values
A(s, a). Each stream of computation shares the same ini-
tial layers for featurizing the input (parameterized by θ),
but they then split into two separate sequences of neural
network layers that compute estimates of the state value
(parameterized by β) and advantage values (parameterized
by α) separately. The two streams are then combined to
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produce a single Q function estimate using the following
equation:

Q(s, a; θ, α, β) = V (s, θ, β)+

(A(s, a; θ, α)−max
a∗

A(s, a∗; θ, α)).
(4)

Note that by subtracting off the advantage of the best ac-
tion, the issue of identifiability is resolved since the advan-
tage function will have zero advantage at the chosen action
(Wang et al., 2015). Since the output of a Dueling Net-
work is a single Q-value, it can be integrated with any other
algorithmic improvement for value-based DRL.

Prioritized Experience Replay In Priority Experience Re-
play (Schaul et al., 2015), samples are prioritized during
training based on their respective TD-error. This means
that samples which the agent has difficulty estimating the
correct value of, are replayed more frequently. There are
two important hyperparameters: α, to what extent priority is
incorporated into the uniform sampling process, and β, the
compensation factor for performing importance sampling
on the TD-error for the transitions in the buffer.

Distributional RL with Quantile Regression Dabney et al.
(2017) proposed learning an N quantile distribution over Q
values. As opposed to the C51 algorithm from Bellemare
et al. (2017) which learns the probabilities associated with
51 fixed supports (ranging from vmin to vmax), this scheme
fixes the probabilities associated with each support

(
1
N

)
and

instead learns the support values. Because the set of supports
for the predicted and target quantiles can be disjoint, the
Wasserstein loss is used (as opposed to the KL divergence
in Bellemare et al. (2017)).

Due to space constraints, please see the appendix section
A.2 for the related work on Noisy Networks and Multi-
Step Returns.

3. Extending RBF-DQN
We investigated how to extend the improvements of Rain-
bow DQN to RBF-DQN. In this section, we present new aug-
mentations to accommodate applying Double Q-Learning,
Dueling Networks, and Distributional Q-Learning to RBF-
DQN. All other Rainbow augmentations (PER, Noisy Net-
works, and Multi-step Learning) are directly applicable with-
out modification. 1

3.1. Double Q-Learning

To adapt double Q-Learning networks for RBF-DQN, the
optimal action is selected using the online centroid and
centroid value modules, parameterized by θ, and then pro-
ducing a Q-value using the centroid and centroid values

1https://github.com/SreehariRamMohan/
rainbow_RBFDQN. Our rainbow RBF-DQN implementation.

from the target network, parameterized by θ−, respectively.
We implement double RBF-DQN according to

Q(s′, a∗; θ−) =

∑N
i=1 e

−β||a∗−ai(s
′;θ−)||vi(s

′; θ−)∑N
i=1 e

−β||a∗−ai(s′;θ−)||
(5)

where a∗ = argmaxai
Q(s′, ai; θ) is chosen according to

the online network. The action a∗ is the centroid location
associated with the highest Q value according to Equation
1.

3.2. Distributional Q-Learning

In distributional Q-learning, rather than learning Q values
in expectation, we learn the complete value distribution for
a given state-action pair. We considered two approaches for
learning this value distribution:

1. Fix the supports of the distribution and learn the prob-
abilities associated with each support. This was the
approach used in the C51 algorithm (Bellemare et al.,
2017), where 51 supports are uniformly arranged be-
tween vmin and vmax. We found that agents using this
approach plateaued in performance, and got stuck in
local optima. The min and max support values for
the distribution are important, as a bad choice of these
hyper-parameters makes it extremely difficult or im-
possible to represent certain values (since the value is
taken to be the mean of this distribution). Furthermore,
during training the value distribution will be varying
wildly from state to state as the network is learning so
there is no one vmin and vmax that is suitable across
training.

2. Fix the probabilities of each support (uniformly across
all supports) and learn the values correspondingly. This
approach is more flexible than the one above, with
fewer hyper-parameters to tune.

Applying this to RBF-DQN, the network’s centroid value
module is modified to instead output the quantile distribu-
tion for each centroid, denoted by the matrix Z ∈ RNC×NQ

values, where NC is the number of centroids and NQ is the
number of quantiles. Taking the expectation of the supports
for the ith centroid results in the value vi for the ith centroid,
and can be summarized by v⊤ = w⊤Z, where v ∈ RNQ ,
a is the proposed action and ai is the location of the ith
centroid, and the components wi of the vector w ∈ RNC

represent the normalized distances from the proposed action
a to each centroid location ai:

wi =

(
∥ai − a∥2∑NC

i=1 ∥ai − a∥2

)
(6)

https://github.com/SreehariRamMohan/rainbow_RBFDQN
https://github.com/SreehariRamMohan/rainbow_RBFDQN
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[
w1 w2 ... wNC

]


z11 z12 · · · z1NQ

z21 z22 · · · z2NQ

...
...

. . .
...

zNC1 zNC2 · · · zNCNQ


(7)

Each row in Z represents the quantiles for a given centroid.
The element zij(s, a; θ′) represents the jth quantile for the
ith centroid. v represents the weighted quantile distribution
for an action a, which can then be averaged to get Q(s, a).

Quantile regression loss (Dabney et al., 2017) is used to
update the network, where τ is a quantile probability associ-
ated with the given target distribution.

ρτ (u) = |τ − δu<0|L(u),

where

L(u) =

{
1
2u

2, if |u| < 1

|u| − 1
2 , otherwise.

In algorithm 1, u is the distance between each predicted
support and each target support, with an additional argument
of τ to specify which quantile point the prediction support
is approximated to. Each quantile point zj(s, a; θ′) ∀j ∈
[1, NQ] is independently moved toward the correct quantile
position (according to the target quantile distribution formed
by T zj where T is the Bellman operator).

3.3. Integrated Agent

Our integrated RBF-DQN agent (Rainbow RBF-DQN) in-
corporates Distributional Quantile Regression, Double Net-
works, and Priority Experience Replay (PER). Empirically
we found that Dueling networks, Noisy networks, and Multi-
step returns did not lead to a consistent boost in performance
over vanilla RBF-DQN so we exclude them from our Rain-
bow agent.

In order to incorporate PER to distributional RBF-DQN, the
sampling weights are replaced with the regression loss for
each batch of transitions.

pt ∝ (

NQ∑
i=1

Ej [ρτi(r + γzj(s
′, a∗; θ−)− zi((s, a; θ))])

w.

Double Q learning is added to Distributional RBF-DQN
by having the online network parameterized by θ choose
the centroid with the highest value at s′, and return that
centroid as the optimal action. This action is then passed
into the target network parameterized by θ− to return the
target quantile distribution. ytarget = r + γzj(s

′, a∗; θ−),
where a∗ ← argmaxE[zi(s′, ·; θ)].

Algorithm 1
Distributional RBF-DQN with Quantile Regression

1: Initialize deep RBVF with NC , NQ, β, θ
2: Initialize replay buffer D, ϵ, γ, θ−
3: Initialize maxstep, Fupdate, Fsynchronize

4: steps← 0
5: θ− ← θ
6: while steps < maxstep do
7: s← env.reset(), done← False
8: while not done do
9: a ∼ ϵ-greedy

(
Qβ(s, ·; θ)

)
10: s′, r, done← env.step(s, a)
11: add ⟨s, a, r, s′, done⟩ to D
12: if steps%Fupdate == 0 then
13: sample a batch from D
14: L← 0
15: for ⟨s, a, r, s′, done⟩ in batch do
16: Qβ(s

′, a′; θ−) := 1/NQ

∑
j zj(s

′, a′; θ−)

17: a∗ ← argmaxa′ Qβ(s
′, a′; θ−)

18: T zj ← r + γzj(s
′, a∗; θ−),∀j

19: L+ =
∑NQ

i=1 Ej [ρτi(T zj − zi((s, a; θ))]
20: end for
21: minimize L using gradient decent
22: end if
23: if steps%Fsynchronize == 0 then
24: θ− ← θ
25: end if
26: steps+ = 1
27: end while
28: end while

4. Experiments
4.1. Rainbow RBF-DQN for Regression

To illustrate the distributional component of Rainbow RBF-
DQN, we perform a stochastic regression task modelled
after a simple stateless bandit problem, with the discount
factor γ = 0. The agent randomly selects an action a =
(x, y) ∈ [−2, 2]2 and receives a stochastic reward r(x, y |
U) conditioned on a uniform random variable U ∼ U(0, 1).
During training, we hold the state s to a constant 1 as the
agent minimizes ∥r(x, y | U)−Q̂θ(s, a)∥22. The agent must
accurately predict the payoff based on the reward function
described below, with components shown in Figure 2:

r(x, y | U = u) =


sin(x2 + y2) if u < 1

3
2 if 1

3 ≤ u ≤ 2
3

([ x
10 ]

1
3 + 1.5) if 2

3 < u

Training quantile distributional RBF-DQN on r(x, y)
gives an estimation shown in Figure 3. We evaluated
the agent at the following points in the action space
{(−1.8, 0), (0, 0), (1.8, 0)} producing 3 distributions—
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Figure 2: Reward function components used in the stochas-
tic regression. Each function has a uniform random chance
of being used as the reward function.

higher frequency implies a gathering of quantiles at those
locations.

At the point (−1.8, 0), E[r(−1.8, 0)] = 0.997, however
based on the f, g, h reward components found in Figure 2 it
is clear to see the reward distribution is trimodal, with pay-

offs of sin((−1.8)2), 2, or
(−1.8

10

) 1
3 +1.5 depending on the

value of u. Notice how the top support distribution in Figure
3 for the point (−1.8, 0) also reflects the trimodal nature of
the reward, while the expectation of the distribution is close
to the true 0.997 (as can be seen in Figure 4).

4.2. MuJoCo Control Tasks

We test our rainbow RBF-DQN agent on the 6 Open AI gym
(Brockman et al., 2016) tasks presented in the vanilla RBF-
DQN paper (Asadi et al., 2020) as well as on Humanoid-v2,
a challenging 17 dimensional action space control task (for
hyper-parameter details see appendix section A.5). For each
task we use the low dimensional state space and default
dense reward. We report the cumulative evaluation rewards
across 10 trajectories (evaluation frequency can be found in
section A.5 Table 9).

For RBF-DQN with PER, performance was generally best
with β annealed from 0.4 at the start of training to 1.0 by
the end of training and α set to 0.1. The combined hyper-
parameter space for Rainbow RBF-DQN is extremely large
and we supplied best estimate values, it may be possible to
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Figure 3: The histogram above shows support location fre-
quency. Hotter colors represent clusters of supports around
a particular value.
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Figure 4: Distributional RBF-DQN trained with 200 cen-
troids

squeeze out even more performance from these agents with
a systematic tuning.

5. Analysis
In this section we review our experimental results and com-
pare rainbow RBF-DQN to vanilla RBF-DQN and an ex-
isting state of the art actor-critic method, Soft Actor Critic
(SAC) from Haarnoja et al. (2018). We use the public imple-
mentation of vanilla RBF-DQN2 and use the stable baselines
3 implementation of SAC3.

5.1. Comparison to baseline vanilla RBF-DQN and SAC

In Figure 1 we plot rainbow RBF-DQN’s performance
across all 7 control tasks relative to vanilla RBF-DQN and

2https://github.com/kavosh8/RBFDQN pytorch
3https://github.com/DLR-RM/stable-baselines3
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Figure 5: Total evaluation reward per episode for Pendulum, Lunar Lander, Bipedal Walker, and Hopper. All variants ran on
5 seeds and the 95% confidence interval across all seeds is shaded.

SAC. Each task is treated equally, each variation is run for
5 seeds, and evaluation rewards are normalized relative to
vanilla RBF-DQN. For full details about how this graph was
constructed, see the appendix section A.1.

According to Figure 1, when we average the performance
of Rainbow RBF-DQN across all tasks, it is 10% better
in final performance than vanilla RBF-DQN and 30% bet-
ter than SAC (as well as more sample efficient as can be
seen by the steeper learning curve). This improvement is in
aggregate—on certain tasks like Humanoid, Rainbow RBF-
DQN achieves almost 200% the reward of vanilla RBF-
DQN, and nearly 25% better than current state of the art
methods like SAC. Individual results are given in Figures 5
& 6. On a per-task basis, Rainbow RBF-DQN outperforms
SAC on every task except Ant (where it is similar in perfor-
mance), and only slightly underperforms vanilla RBF-DQN
on Hopper. Rainbow RBF-DQN improves performance on

Bipedal Walker and improves vanilla RBF-DQN’s already
strong performance on the HalfCheetah task.

5.2. Ablation Studies

In order to determine the individual contribution of each
component of Rainbow RBF-DQN we run ablation experi-
ments, taking one component out of rainbow RBF-DQN to
see the impact on the final performance. We also include a
few other variations which empirically performed well.

On high dimensional action space tasks, distributional
value representations (with quantile regression) for RBF-
DQN are crucial to achieving high reward, and are thus
the most important ingredient to Rainbow RBF-DQN. In
Figure 6, the Humanoid learning curve shows that both
vanilla per (vanilla with PER) and vanilla double lag behind
all the variations with distributional representations included
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Figure 6: Total evaluation reward per episode for Half Cheetah, Ant, and Humanoid tasks. All variants ran on 5 seeds and
the 95% confidence interval across all seeds is shaded.

(dist double, dist, and Rainbow RBF-DQN). Double net-
works had only marginal positive impact on Distributional
RBF-DQN hinting toward the fact that Distributional alone
may have overestimation limiting properties. PER generally
speaking led to only marginal improvements when paired
with distributional RBF-DQN (we used α = 0.1), but we
included it because it is a relatively simple addition to the
algorithm.

We also implemented and tested ablations of Dueling Net-
works (Wang et al., 2015), Noisy Networks (Fortunato et al.,
2018), and Multi-Step learning (Asis et al., 2018), but did
not find that these led to consistent across the board per-
formance increases so we exclude them from the general
purpose Rainbow RBF-DQN algorithm. In the interest of
space, they are included in the appendix section A.4.

6. Discussion
Results for Dueling Networks, Noisy Networks, and Multi-
step returns applied to RBF-DQN can be seen in the ap-
pendix section A.4. In this section we review our experience
integrating these methods, reasons they may have failed, and
potential avenues for future work.

Multi-Step Returns. The poor performance of multi-step
returns across these tasks can be explained by the need
for an importance sampling correction to account for the
difference in likelihood between traversing states under the
behavioral and target policies as the replay buffer fills and
stale state transitions build up. Due to the deterministic,
value based, nature of our policy, it is not entirely obvious
how to correct for this bias, which we leave as an area of
future exploration. Multi-step returns implemented as is,
are incorrect in the off-policy setting because transitions
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are highly correlated to the policy they were sampled from.
This can make the target Q value incorrect with respect to
the current policy and lead to instability in learning, which
is something we empirically observed.

Noisy Networks. We found that in order for noisy layers
to be effective at exploration in these MuJoCo tasks, they
needed to be paired with additional exploration in action
space. If noisy layers with normalization were applied alone
as a replacement for ε-greedy exploration or adding Gaus-
sian noise to the action space, performance drastically de-
creased, as if no exploration was being performed. We posit
this was likely due to exploration in parameter space not
translating to significant exploration in action space: perfor-
mance would flatline. However, the most significant reason
why we chose to exclude noisy networks from Rainbow
RBF-DQN was due to computational overhead of layer nor-
malization (Ba et al., 2016; Zhang & Sennrich, 2019). Noisy
networks show promise, especially on Ant where noisy net-
works alone with RBF-DQN achieved nearly 4, 000 evalua-
tion reward. Future work will consist of trying to tame the
computational overhead while still getting the benefits of
increased exploration.

Dueling Networks. Similar to the findings of Hessel et al.
(2018), we did not find Dueling Networks to lead to con-
clusively improved performance across the board. However
this could entirely be due to architectural design: unlike the
Dueling DQN authors (Wang et al., 2015), we use dueling
networks to break up the supports into a base support mod-
ule (learned by a network) and an offset support module
(which produces the offsets required to translate the base
support into the supports for each centroid). It could be
the case that this architecture is too rigid, overconstraining
the agent and hindering the learning process. We leave the
exploration of better architectures for dueling networks in
Quantile Distributional RBF-DQN as future work.

7. Conclusion
We presented algorithmic extensions for deep value-based
learning for the RBF-DQN architecture, and empirically
demonstrated improved performance on Humanoid, Bipedal
Walker, and Half Cheetah. The most crucial ingredient
in Rainbow RBF-DQN is quantile distributional value
representations—allowing our agent to excel on high di-
mensional tasks like Humanoid, outperforming state of the
art SAC results. Taken together, our results show that classi-
cal DQN enhancements in the discrete action domain can be
applied with care to the continuous action domain. We hope
Rainbow RBF-DQN becomes one of the go-to value-based
methods that RL researchers use for continuous control
tasks in high dimensional action spaces.
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A. Appendix
A.1. Figure 1 Generating Process

In Figure 1, we compare our integrated agent (rainbow colored) to vanila RBF-DQN (grey) and SAC (red). The data for
each task is first normalized using the final performance achieved by vanilla RBF-DQN on that task (each variation on each
task is trained for 5 seeds). We then take the mean across tasks to show average performance.

A.2. Related work for Noisy Networks and Multi-Step Returns

Noisy Networks Noisy networks, introduced by Fortunato et al. (2018), provide a method for automatically exploring
network parameter space by incorporating learned mean and covariance weights into each layer of the network. To do so,
sampled noise is injected at every noisy layer during training. The injected noise is scaled by the current values of the
covariance matrix, which results in network parameter exploration. When applied to Q-Learning networks, the effect is that
the Q-values will be perturbed, resulting in a stochastic optimal-action selection when greedy policies are applied.

Muti-Step Learning In multi-step learning, instead of training the Q-value on the basis of a single step of temporal
difference error, an n-step temporal difference error is used:

TDError =

n−1∑
k=0

γkrt+k + γn max
a

Q(st+n, a)−Q(st, at). (8)

When multi-step learning is utilized in conjunction with off-policy learning, the relative probabilities of trajectories produced
between current and old policies need to be accounted for by importance sampling. However, based on the work of Fedus
et al. (2020), despite the fact that multi-step’s reward is based on the agent’s current policy during exploration, in practice,
multi-step can sometimes give better performance compared to the single-step counterpart.

A.3. Dueling Network Extension for RBF-DQN

In the context of RBF-DQN, we apply dueling networks to the centroid values, with two networks estimating base centroid
value and centroid advantages respectively. Because the Q-value estimation for a given state and action is the weighted
average of each centroid value (weight determined by distance to a given action based on a kernel), we propose that
decoupling the centroid-value into a base value network, Vbase, and advantage network, A, can improve centroid value
estimation. We empirically experimented with different operators in the centroid-value aggregator module below, and found
max to be better than other options like mean. Both the centroid value and centroid advantage modules are trained jointly,
each with their own optimizer and learning rates.

Each centroid value vi(s) is then a superposition of the base value with the centroid advantage value, which results in the
following interpretation of Q(s, a) = A(s, a) + V (s)−maxa(A(s, a)) values:

vi(s) = Vbase(s) +Ai(s)−max
i

(Ai(s)) (9)

Q(s, a) =

∑N
i=1 Ai(s;ϕ)e

−β||a−ai(s;θ)||∑N
i=1 e

−β||a−ai(s;θ)||

+ Vbase(s)−max
i

(Ai(s;ϕ))

(10)

A.4. Ablation Results for Dueling Networks, Multi-Step Returns, and Noisy Networks with RBF-DQN

Shown in Figures 8 and 9.
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Figure 7: The Dueling RBF-DQN Network Architecture. The plus sign signifies the aggregator module.

A.5. Hyper-parameters for all tasks

The table below lists the hyper-parameters used across all tasks for Rainbow RBF-DQN. We inherit the core hyper-
parameters from RBF-DQN (Asadi et al., 2020), including new hyperparameters for the Rainbow components. For the sake
of completeness they are listed here and can also be found in the rbf hyper parameters folder in the provided code.

Table 1: Base Hyper-parameters

Hyper-parameter value
# hidden layers in centroid base value module 3
# hidden layers in centroid advantage module 3
# hidden layers in centroid location module 1

Replay Buffer Size 500, 000
gamma 0.99

target network learning rate 0.05
# distributional quantiles 200

optimizer Adam
# network updates per step 1

batch size 256
PER α 0.1
PER β scheduled from 0.4 to 1

policy type ϵ greedy
ϵ greedy exploration reduction exponential 2.75

Each task inherits the hyper parameters above, any changes specific to each task are listed below.

Table 2: Pendulum Hyper-parameters

Hyper-parameter value
training steps 40, 000

RBF-DQN # centroids used 100
RBF-DQN temperature 1

learning rate 0.00025
reward clip 20
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Figure 8: Additional ablation experiments with RBF-DQN, incorporating Dueling Networks, Multi-Step Returns, and Noisy
Networks

Table 3: Lunar Lander Hyper-parameters

Hyper-parameter value
training steps 200, 000

RBF-DQN # centroids used 100
RBF-DQN temperature 2

learning rate 0.000025
reward clip 20

Table 4: Bipedal Walker Hyper-parameters

Hyper-parameter value
training steps 1, 600, 000

RBF-DQN # centroids used 100
RBF-DQN temperature 2

learning rate 0.00001
reward clip 20
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Figure 9: Additional ablation experiments with RBF-DQN, incorporating Dueling Networks, Multi-Step Returns, and Noisy
Networks

Table 5: Hopper Hyper-parameters

Hyper-parameter value
training steps 1, 000, 000

RBF-DQN # centroids used 100
RBF-DQN temperature 0.15

learning rate 0.00005
reward clip 50

Table 6: Half Cheetah Hyper-parameters

Hyper-parameter value
training steps 2, 000, 000

RBF-DQN # centroids used 500
RBF-DQN temperature 0.25

learning rate 0.0001
reward clip 20
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Table 7: Ant Hyper-parameters

Hyper-parameter value
Replay Buffer Size 250, 000

training steps 2, 000, 000
RBF-DQN # centroids used 100

RBF-DQN temperature 0.10
learning rate 0.00001
reward clip 20

Table 8: Humanoid Hyper-parameters

Hyper-parameter value
training steps 2, 000, 000

RBF-DQN # centroids used 500
RBF-DQN temperature 0.10

learning rate 0.00001
reward clip 20

Table 9: Evaluation Frequency for each task

Task Name Evaluate Agent every # steps
Pendulum-v0 200

LunarLanderContinuous-v2 200
BipedalWalker-v3 1600

Hopper-v3 1000
HalfCheetah-v3 1000

Ant-v3 1000
Humanoid-v2 1000


